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NONDISSIPATIVE INELASTIC STRAIN FOR A SOLID ELEMENT 

G. V. Ivanov UDC 539.3 

Elastic strains for a solid element are the part of strain for the element which disap- 
pears after it is unloaded (removal of external effects). Inelastic (residual) strains are 
the part of strain for the element which remains in it after it is unloaded. Apart from in- 
elastic strains for an element with which mechanical energy is converted into heat, nondis- 
sipative inelastic strains are possible, i.e., those with which mechanical energy is not 
converted into heat. 

One of the simplest and graphic examples of a deformation process with nondissipative 
inelastic strains may be deformation of a system of two elastic springs and a rod (Fig. 1 
from [i]). During deformation of this system mechanical energy is not converted into heat, 
but due to overall clamps A the unloading process proceeds in a different way from the 
loading process, as a result of which the relationship between force p applied to the rod 
and displacement ~ of the rod will have the form indicated in Fig. 2, where A* is nondissi- 
pative inelastic strain of the system. 

In this work equations are formulated determining nondissipative inelastic strains for 
a solid element. 

i. Division of Strain into Elastic and Inelastic. As a strain tensor we take [2] 

eije'e' :~#D~D ~, ~13= ~-( ~z'Dl3 e~.e~) (1.1) 

(~ and e i are basis vectors of Lagrangian and Cartesian coordinate systems). 

The state of a material element from which strain is reckoned is called the initial 
state. We assume that stresses in the initial state equal zero, density and temperature 
equal prescribed values P0 and To differing from zero, and in any stage of the deformation 
process for the material element it is possible to "unload it completely" to a state with 
stress and "temperature T o equal to zero (by cutting an element from a material, heating and 
cooling it 'to the temperature of the initial condition, and giving it the possibility of 
deforming freely). 

In gaseous media equality of stresses to zero is only possible with density equal to 
zero. In this case as an initial condition we take that in which the average stress and 
temperature equal a prescribed value differing from zero, and by "complete unloading" we 
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understand transfer to a condition with average stress and temperature equal to their values 
in the initial condition. 

^" Lagrangian basis vectors and strain tensor compon- We designate in terms of 3~, 3~, e=~ 
�9 " i ( 3 ~  ents in the "complete unloading" condition. Following [2], we call y~e'e ~ =~3~ ~, y~=~ 

3* 3 *~ " ~* "~-- ~" ~/, the elastic strain tensor. The difference in tensors e~e~e ~ =~3~3 ~, e~ = (~-- 
y=~)/2, we call the inelastic strain tensor. Thus, in the general case of deformation of a 
material element components eij of the strain tensor are in the form of the sum of components 
Xij, eij* for elastic and inelastic strain tensors 

e~ ~ Yi~ + e~.  (1.2) 

By differentiating with respect to time equations for the link between strain tensor 
components e~8 and eij and using the equality 

we obtain 

,ds~j ----- eij -- e~ Ou-~k -- ~ auh ( 1.3 ) 
dt Ox j Ox~ 

w h e r e  t i s  t i m e ;  x i and  u i a r e  C a r t e s i a n  c o o r d i n a t e s  and  v e c t o r  c o m p o n e n t s  f o r  p a r t i c l e  v e -  
l o c i t y .  

From (1.2) and (1.3) it follows that 

d?~j =eij -- %'~ auk ~ Ou~ 
dt Oz---- 7 - -  ?j ~ - -  cptj; ( 1 . 4 )  

dsi* j , Ou h , Ou ~ 
r = ~ + e~h az--- 7 + ejk az--- 7. (i. 5) 

Tensor (pije:e ~= ~ is called the inelastic strain rate tensor. We designate in terms 

of y, e, and ~ the first invariants of the elastic strain tensor, strain rates, and inelas- 
tic strain rates y = oiJYij, e : 6ijeij, ~= 6iJ~ij. From (1.4) it follows that 

( 2 ) ,, ,,j ( 1 . 6 )  d?_?= l - -  y y e-- zy~ie -- ~p; 
dt 

d? '~ j_[~ .  ) , , 0 u~ , Ou ~ 2 ~ ' e , ~  ' 
dt ~-~ e~ - -%,~  - -  ~ 1 7 ~  + "~- '~~"  - -  q~" ( l .  7 )  

Here Xij', eij', ~ij' are elastic strain deviator components, strain rates, and inelastic 
, i , i , 

strain ratesyij = yij--~6~y~e U = e ~ j - - y  6~je, ~i= ~J -- y 6~. 

2. Division of Strains into Dissipative and Nondissipative. We limit ourselves to 
the case when internal energy U is only a function of elastic strains ~ij and entropy S: 

U = U(~gu, S). (2.1) 
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Then the energy conservation rule is written in the form 

...... au ( ~ auk ) '  TdS  t ( s l j e i j _ d i v q )  ' eij -- a;i~ o r .  -- ~'jh ax-- 7 -- (Pij -r ~ ---- -~ g?ij 

where p is density; q is heat flow vector; T is temperature (T = 8U/8S). From the second 
rule of thermodynamics it is necessary that 

D = T d S  l dt + -p- div q ~ 0 ( 2 . 2 )  

(D i s  d i s s i p a t i v e  c a p a c i t y ) .  

I n e l a q t i e  s t r a i n  r a t e s  a r e  p r e s e n t e d  in  t h e  form of  a sum 

~,Jl) 
~i~ ---- *i~ + "ei~ �9 ( 2 .3 ) 

Here ~ij are inelastic strain rates on which D depends; ~ij(~) are inelastic strain rates 
on which D does not depend. Division of inelastic strain rates into dissipative and non- 
dissipative corresponds to the equations 

d~*? �9 ** ~*(l )  ~.7 * *  ~/tk ** ~ k  
e i j  - - - -e i j  + i j  , dt = ~ j - - e ~  ax j - - g j h  ~x i , 

d~i~ (1) (1) - -  g~k(') O~ k ~ .$(1) OU~ 

dt ~ ~i j  Ox j -- e~ Ox i 

d e t e r m i n e d  a c c o r d i n g  to  ( 1 . 5 )  f o r  t h e  d i v i s i o n  of  i n e l a s t i c  s t r a i n s  ~ i j *  i n t o  d i s s i p a t i v e  
s t r a i n s  ~ i j *  and n o n d i s s i p a t i v e  s t r a i n s  ~ i j * ( z ) .  

I t  i s  assumed t h a t  e l a s t i c  s t r a i n s  f o r  an e l emen t  o f  m a t e r i a l  a r e  n o n d i s s i p a t i v e ,  
Then thermodynamic  r u l e s  p e r m i t  any v a l u e s  o f  ~Oij and ~ i j  (~) w i t h  which t h e  f o l l o w i n g  cond i -  
t i o n s  a r e  f u l f i l l e d  

D =  oU ~ i>0; ( 2 . 4 )  

Ou ~ t "" OU eij_ 37i~_,jk~zi _~}))___~o~Teij_ O. (2.5) O?@ 

3. Equations for Deformation of a Material Element with Nondissipative Inelastic_ 
Strains. We present nondissipative inelastic strain rates as the sum 

~)) r,.k. ~ auT' (~) ( 3 .1  ) 
=v~j ax  s q- ~ij , 

where c i j k s  a r e  a r b i t r a r y  f u n c t i o n s  o f  e l a s t i c  s t r a i n s  and o t h e r  d e f o r m a t i o n  p a r a m e t e r s  
s a t i s f y i n g  t h e  c o n d i t i o n  c i j k s  = c j i k s  n e c e s s a r y  f o r  symmetry o f  t h e  s t r a i n  t e n s o r ;  ~Pij(2)  

__ (2) are arbitrary functions satisfying the condition ~)_q~ji. 

By substituting (3.1) in (2.5) we find that (2.5) has the form 

[__~o 0 (OU au j aU z~o~laU~ oU (2) O. (3.2) - = 

Equality (3.2) will be fulfilled with arbitrary 8ui/axJ if the dependence of stresses on elas- 
tic strains, entropy, and function Cks13 is determined by the equalities 

�9 " ( a U  . au j au ij) 
~  a-~O -- z a-~/h 7~ -- ~-~ks Ck' ( 3 . 3 )  

and it is demanded that inelastic strain rates q~ i j(2) satisfy the condition 

oU (~) _ 
a?~---7~ ~ij -- O. ( 3 . 4 )  

I t  i s  e v i d e n t  t h a t  f u n c t i o n  ( 2 . 1 )  may be c o n s i d e r e d  as  a f u n c t i o n  of  7, Y i j ' ,  S and 
c o n s e q u e n t l y  e q u a l i t y  ( 3 . 4 )  i s  w r i t t e n  as  

�9 ( 2 ) / a u  

a?ij 
, q~(2) Rij_(2) �9 (2) I ~ (2) 

(3.5) 
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Thus, (3.4) may be interpreted as condition (3.5) governing the dependence of part T(2) of 

the volumetric strain rate on parts ~i~ '(2) of shear strain rates. In this way it is pos- 

sible for arbitrary dependence of ~ij '[2) on elastic strain and other deformation parameters 
satisfying the condition 

= = ~  , o  (p~ = 0 .  ( 3 . 6 )  

Equations (3.3) contain density. Therefore, it is necessary to add to them a continuity 
equation 

dp/dt  = - -pe ,  ( 3 . 7 )  

governing the dependence of dens i ty  on s t r a i n  r a t e .  

I f  the dependence of d i s s i p a t i v e  i n e l a s t i c  s t r a i n  r a t e s  on e l a s t i c  s t r a i n s  and other  
deformation parameters i s  p rescr ibed ,  Eqs. (1 .4 ) ,  ( 2 . 2 ) - ( 2 . 4 ) ,  (3 .1 ) ,  (3 .3 ) ,  (3 .5 ) - (3 .7 )  
form a model for the solid in which apart from elastic and dissipative inelastic strains 
there may be nondissipative inelastic strains. 

4. Nondissipative Inelastic Strains Connected with Simplication of Elastic Deformation 
Equations. We consider deformation equations with internal energy 

i '. 'ij U = / + ToO + 2~ F + cT,  / = / (V), 0 = 0 (~), F = .~ ?ijy . ( 4 . 1 )  
Po 

Here T o , ~, P0, and c are constants; T is elastic strain function and entropy S is deter- 
mined by the equation 

dT d 
c~ = T ~-(S--O). (4.2) 

t 

By assuming that in (1.6) and (1.7) ~ = ~ij = 0 and assuming that elastic strains are 
nondissipative, from the energy conservation rule we find that in the case of (4.1) and (4.2) 
equations for elastic deformation of a material element are written in the form 

2 ~au s~pr, aa dl_(T_To) d0 
a = p  i - -  -~-y) ~-~ 3p ~ a-7=d~ ~ ;  (4.3)  

[ 9 - - -~ g~jr); 2 ) i (ip_o2 4pp(?i?jv 2 

dt "3 ? e - -  2y~$e'iJ, dp - - - -  dt 

( ) , .  du 1 2 " " Ou~" ' auh"  26ijvv~eV*'. (4 .6 )  

In many solids components 7ij' of the elastic strain deviator are small compared with 
unity, for example in metal bodies they are values of the order of the ratio of yield strength 
to Young's modulus. In these bodies the term underlined in (4.3) is small and it should be 
discarded, i.e., (4.3) should be substituted by the equations 

( 2 )OU OU ~__(T_To)~. (4.7) o = p  t - - ~ - v  ~-, ~-= 

For the same reason (4.4) should be substituted by the equations 

- ~ v  (4.8) 

However, t h i s  s u b s t i t u t i o n  leads to  system ( 4 . 5 ) - ( 4 . 8 )  which w i l l  no t  be thermodynamica l l y  
c o r r e c t  ( i t  w i l l  no t  s a t i s f y  the energy conse rva t i on  r u l e ) .  Even when i n f r i ngemen t  o f  the 
energy conservation rule is small, and consequently it does not lead to any marked physical 
contradictions, the very fact that the energy conservation rule does not emerge from the 
set of equations may for example markedly complicate formulation and substantiation of algor- 
ithms for numerical solution of the problem using this system. 

In order that with substitution of (4.3) and (4.4) by Eqs. (.4.7) and (4.8) thermodynam- 
ic correctness is retained for the set of deformation equations, it is necessary to change 
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(4.6) also with this substitution. A change of (4.6) means introducing into (1.7) corre- 
sponding components ~ij' for the inelastic strain rate deviator. By placing in (1.7) 

�9 ' h ' k 2 ' '~13 (p~j ---- - -  ~h~e j - -  Yjhei + -g- (hA'~e , ( 4 . 9 )  

we find that derived components Yij' of the elastic strain deviator with respect to time 
in the case of (4.9) will be connected with strain rates and rotation angles by the equa- 
tions 

( t 2 , 'h 'h d?~j_ I--T? eo--?J ~k~--?i~hj, 
dt 

t / 0% Oui" ~ 

= o-7 l"  

It is easy to be certain that system (4.5), (4.7), (4.8), (4o10) is thermodynamically cor- 
rect. It satisfies the energy conservation rule with dissipative capacity equal to zero, 
and therefore inelastic strain rates determined by Eqs. (4.9) are nondissipative elastic 
strain rates. If these rates are small compared with strain rates el j, the deformation 
process for (4.5), (4.7), (4.8), (4.10) may be considered elastic. 

The term p0/D(l - 2~/3).au/a~ in (4.8) may be small in many cases (of the order of the 
ratio of average stress o to elastic shear modulus B). A condition for retaining thermo- 
dynamic correctness of the set of deformation equations for a material element with simpli- 
fication of (4.8) by substituting them by equations 

2~p ( i  2 , o~5 = -57o~ -yv) ~ (4.11) 

requires substitution of (4.5) by equations 

( 2 ) dp 
d--?= i--~? e, ~ = - - p e ,  (4.12) dt \ 

i.e., introduction into (1.6) of rates for nondissipative elastic change in volume cp = 

- -  2~je '~. 

Similarly it is possible to carry out further simplification of system (4.7), (4.10)- 
(4.12) by introducing the corresponding nondissipative inelastic strains. For example, by 
placing in (1.6) and (1.7) 

P0 '" 

(4.13) 

we obtain 

au oU _ df (T - -  To) ~?, 
o~j = 2~?~j, o = Po av ' or av 

dYi./  Po ' ' k  ,h  0 d y  .~ dp _ 

dt = -P eO - "~i o)M - -  "~j h~, d-- f= e,  dt - -  - -  - -  p c .  

(4.14) 

With a small change in density, conditions for thermodynamic correctness of the equations 
may be weakened by substituting them by approximate conditions 

_ dS 
dU ~ (oiJe~j - -  div q), D = T ~7 + div q / >  0. ( 4 . 1 5 )  
dt Po 

E q u a t i o n s  ( 1 . 6 ) ,  ( 1 . 7 )  and  c o n d i t i o n s  ( 4 . 1 5 )  w i l l  be  f u l f i l l e d  i f  i n  ( 4 . 1 3 )  and  ( 4 . 1 4 )  p 
equal to P0 is placed. 

5. Nondissipative Inelastic Strains Connected with a Change in Elasticity "Moduli." 
Simplification of elastic deformation equations is only one of the reasons for appearance of 
inelastic nondissipative strains in equations for a solid. Another reason may be introduc- 
tion into deformation equations for a material element of nondissipative inelastic strains 
with the aim of describing different phenomena, such as for example the difference in resis- 
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tance of a material element to deformation and failure in tension and compression, embrittle- 
ment (reduction during deformation of resistance to brittle failure), loosening (densifica- 
tion) with shear strains, strain localization during failure, etc. 

Possibilities for describing these phenomena by introducing nondissipative inelastic 
strains are considered on the example of a material in which internal energy is prescribed 
in the form of equalities (4.1) and (4.2), and apart from elastic strains there may only be 
nondissipative inelastic strains with rates in the form 

= %1e + 2X2?~e '~j, 
�9 , 2 o ' 'a~ 'h ( 5 . 1 )  

%j = %aeij + ~ o~j?~e -- ?j eki - -?~ekj  

(• k = 1,2, 3 are arbitrary functions of elastic strains and other deformation parame- 
ters). In the case in question derived elastic strains in time are connected according to 
(1.6) and (1.7) with strain rates by equalities 

and Eq. (3.3) are written as 

d~ ( 3 ) 
- - =  t - - y ? - - % 1  e - - 2 ( t + X ~ ) ? ~ e  ' ~ ,  
dt 

t 

dt 

( 
av at (T - To) ~ ,  I = / (~,'), 0 = 0 (~), a? d? 

• [~ 2 _p 2] 
~ = ~ p o  - y ~ - z ~ - ( t + z ~ ) ~ a ~ ] .  

(5.2) 

(5.3) 

We consider overall expansion of a material element under conditions that • = 0, T = 

( ) To.  I n  t h i s  way ei~ - -  mij---- 0, e - -  t dp d? 1 2 p d r '  dt  ~ - - - ~  e and  c o n s e q u e n t l y  

P = P o ( t - -  2 \8/2 ~v)  �9 (5.4) 

In formulating deformation equations for a solid with a marked change in density it is normal- 
ly assumed (see e.g., [3]) that internal energy for the element with p ~ 0 tends asymptotical- 
ly toward some constant value similar to the reaction energy for atoms with a change in dis- 
tance between them to infinity. Assuming that function f(y) in (5.3) satisfies this condi- 
tion, from (5.3) and (5.4) we find that 

0-+0 wig ?--)-3/2. 

With small values of 7 the dependence of o on u is close to linear 

(5.5)  

= A ?  ( 5 . 6 )  

(A is a positive constant). It follows from (5.5) and (5.6) that in the case of overall 
expansion with Xz = 0, T ffi To the curve for the dependence of o on 7 has the form shown in 
Fig. 3 by the solid curve. It is evident that it will be the same in the general case with 
a deformation of a material element with • = 0, T = T o . Its characteristic feature is the 
limitedness of average stress. Presence of function • in (5.3) creates the possibility of 
changing by means of function Xz the dependence of o on 7, as for example shown by a broken 
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line in Fig. 3. In particular, this makes it possible to describe by means of function • 
a change for one reason or another of material element resistance to failure due to the 
limitedness of average stress. 

The presence of function X2 in (5.3) makes it possible by using it to describe the ef- 
fect of shear strains on the change in volume and average stress. Let deformation proceed 
with o = ~ = 0. In this case, according to (5.2) shear strains lead to a change in volume 

2 ( l +  X2) , , 
by the equation e- X~--?~ea~" Let deformation occur without a change in volume. Then 

i 

shear strains lead to a change in y by the equation d_/? _----2(I + %2)?~,~s =~ and consequently dt 
to a corresponding change in average stress. Presence of function X3 in (5.3) makes it 
possible by using it to describe the change for one reason or another of elastic shear modu- 
lus ~. 

The examples provided demonstrate that there are very extensive possibilities for de- 
scribing different phenomena by introducing nondissipative inelastic strains into deforma- 
tion equations for a material element. 

I, 

2. 
3. 
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DIRECT METHOD OF DETERMINING THE DYNAMICAL RESPONSE IN INTERACTIONS 

OF CONSTRUCTION ELEMENTS WITH CONCENTRATED MASSES AND RIGIDITIES 

A. V. Agafonov UDC 534.1 

In many cases of calculation of construction elements (rods, plates, etc.) subjected 
to concentrated interactions it is sufficient to know only the strain-stress state of the 
considered element directly at the points of load and the element on the whole (or the whole 
construction) is of interest only in the sense of its integral response to the interaction. 

If the concentrated interaction is given then finding this integral response is usually 
not difficult. In the same cases when the interaction depends on the motion of the construc- 
tion element itself, determining the integral response necessitates coupling the variation 
of the load to the motion of the construction. 

To solve such problems one uses the basic method of dynamic susceptibilities [i, 2]. 
According to this method the solution is constructed in two stages [i]: first, one finds 
separately the dynamic susceptibilities of the element and the mass (rigidity) acting on 
it under action of a suddenly applied concentrated force; next, one seeks the response to 
the interaction of the element with the mass (rigidity) from the integrodifferential equa- 
tion expressing the condition of equality of the displacements of the mass and the element 
at the point of interaction. 

At the same time there exists a possibility of developing a method which permits one 
to determine parameters of interest at the point of interaction bypassing the preliminary 
determination of the dynamic susceptibilities and shortening the process of solving the 
problem. Such a method can be proposed on the basis of integral transforms and the for- 
malism of 6-functions. 
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